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Abstract. The narrow-tube quasienergy quantization allows an identification of part of the
spectrum due to stable elliptic islands of the period map. With its transparent connection to
the classical dynamics it also sets an absolute scale to the understanding of the Brillouin zone
spectrum of quasienergies. In combination with a recent time-dependent normal-form expansion
we show that the applicability and accuracy of the narrow-tube quantization is improved. Its
analytic form helps us understand the quasiregular motion centred near periodic responses. We
numerically consider harmonic and subharmonic elliptic islands of the weakly nonlinear Duffing
oscillator.

1. Introduction

There is a current theoretical development of corrections to leading-order semiclassical
quantization formulae [1, 2]. The successes of the WKB (Wentzel–Kramers–Brillouin) and
phase-integral methods of separable dynamics are well documented [3]. In the same spirit,
it is useful to have accurate quantization formulae such as those associated with locally
regular motion of mixed systems. In this paper we consider a time-dependent Hamiltonian
system with a mixed regular and irregular phase space.

The recent development of a higher-order time-dependent normal form [4] and its
asymptotic (adiabatic) expansion [5] is suited for this purpose. This is a further development
of the narrow-tube framework presented in [6]. We report the first application of this recent
formalism to a time-periodic Hamiltonian Duffing system. In particular we investigate the
limitations as to resonance phenomena.

The relation between the narrow-tube quantization and the semiclassical EBK (Einstein–
Brillouin–Keller) quantization of time-periodic systems [7, 8] is of importance in this work.
The EBK calculations are performed numerically from classical phase-space data (where
sometimes interpolations between tori data are required) and, like its Bohr–Sommerfeld
counterpart in one dimension, the result can only occasionally coincide with exact quantal
results. The main difference is that Bohr–Sommerfeld’s formula does not need numerical
phase-space data in the calculation. Hence, there are typical errors involved in the EBK
results of higher order in ¯h.

In the higher-order narrow-tube framework the results can in principle be asymptotically
correct, depending on thelocalization. This is merely a quantum tail effect of a finite
shifting of the boundary conditions, resulting in exponentially small corrections. However,
the localization of the wavefunction may not be trivially satisfied (see Howland [9] and
Hone et al [10]) for all oscillators, and even if it seems to be justified for the confining
repulsive Duffing oscillator, the localization means that one neglects effects due to tunnelling
communication with the outside of the main elliptic island.
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Assuming that the localization is justified, the occurrences of elliptic subharmonic
chains and the associated stochastic separatrix layers inside the main elliptic island
manifest themselves as singularities in the corresponding orders of the present narrow-tube
quantization, as in all (non-resonant) normal-form theories. The low-order narrow-tube
quantization thus neglects classical irregularities belonging to higher orders, which means
a smoothening of the true quasienergy spectrum as a function of some physical system
parameter.

If the narrow-tube quantization is sufficiently convergent, there is outlined in [4, 5] a
systematic phase-integral expansion of the relevant narrow-tube quantities that correspond
to a semiclassical expansion.

A particular objective of the present investigation is to clarify the observation in [6]
that thelarge-amplitudeelliptic centre of the weakly driven Duffing system was strikingly
better described by the first-order narrow-tube quantization than thesmall-amplitudeelliptic
centre was. In this work we can analyse the contributions of the subsequent order in detail
to find an explanation.

Section 2 outlines the time-dependent normal-form procedure unified with the narrow-
tube quantization. The limitations of the procedure due to resonances are discussed in
section 3. The formulae are applied in section 4 to a periodically excited Duffing oscillator,
which has been studied both semiclassically and quantum mechanically. Quasiregular
motion centred onT -periodic and 3T -periodic responses are analysed. Conclusions are
given in section 5.

2. Outline of the narrow-tube quantization

In this section we summarize the essential steps in the higher-order narrow-tube quantization
procedure, leaving particular details for the specific Hamiltonian Duffing oscillator to
section 4.

A time-periodic Hamiltonian oscillator of the form

H(px, x, t) = 1
2p

2
x + V (x, t) (1)

with the externalT -periodic condition

V (x, t + T ) = V (x, t) (2)

may support a mixture of regular and chaotic dynamics. A family of regular classical
trajectories is typically centred around each stable periodic orbit (dynamical equilibrium,
elliptic centre) of the system, with a characteristic periodTp rationally related toT . A linear
systems would have just a single periodic response ‘organizing’ a single family of regular
dynamics.

The Hamiltonian can be subject to a canonicalTp-periodic centre transformation
(x = xp(t)+ q, px = ẋp(t)+ p), as described in [11], where the new ‘centre’ Hamiltonian
takes the form:

H(p, q, t) = −Lp(t)+ 1
2p

2+ 1
2h2(t)q

2+ 1
3h3(t)q

3+ 1
4h4(t)q

4+ · · · (3)

Lp(t) being the Lagrangian of theTp-periodic centre trajectory and the periodic behaviours
of hj (t), j = 2, 3, . . . are also due to the underlying centre motion. The coefficient function
h2(t) plays a key role and its specific periodicity will be denotedTF (Floquet-period), since
it may beTF = Tp/2 for certain symmetric trajectories, which we shall see later. This is
the first step in the local quantization of elliptic islands of the external period-T map.
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In a second step we propose the time-dependent normal-form transformation, described
in detail by Thylwe and Dancowicz [4], yielding the transformed Hamiltonian

KTD(LN, t) = −Lp(t)+ η1(t)LN + η2(t)L2
N + η3(t)L3

N + · · · + ηN(t)LNN (4)

whereLN is the Ermakov–Lewis invariant corresponding to the truncation orderN of the
canonical expansion, and the new coefficients are periodic with periodsTp or TF . The
semiclassical narrow-tube quantization, as introduced in [11], corresponds to the linear
expansion (N = 1) in (4) with L1. The coefficientη1(t) has the particular relevance of
being the angular velocity of the linearized vortex flow in phase space. As we shall see
later, it has the same periodicityTF as the ‘linear’ coefficienth2(t).

At the time of the formulation of the narrow-tube quantization [6], the higher-order
terms in the time-dependent normal form were not defined. It turns out that the higher-
order coefficient functions exist and are periodic provided the centre motion is sufficiently
non-resonant. We return to this delicate point later in connection with the analysis of the
Duffing oscillator.

In a final step we can quantize the separable time-periodic Hamiltonian (4). For the
‘space’ variables, we quantize a Cartesian relation [11]

L = (P 2+Q2)/2 (5)

independent of the indexN of the truncation order, obtaining an ordinary differential
equation of the time-independent Schrödinger type:

d29

dQ2
+ 1

h̄2 (2L−Q2)9 = 0. (6)

The ‘spatial’ wavefunction9(Q) satisfies the boundary conditions oflocalization around
the centre motion:

9(Q)→ 0 as|Q| → ∞ (7)

which leads to

Ln = (n+ 1
2)h̄ n = 0, 1, . . . . (8)

The quantization in time of the Hamiltonian (4) turns into another ordinary differential
equation:

KTD(Ln, t)8 = ih̄
d8

dt
(9)

which is trivially solved. The resulting wavefunction is a product of a spatial part and a
temporal one:

Y (Ln;Q, t) = 9(Ln;Q) exp

(
− i

h̄

∫ t

0
KTD(Ln, t ′) dt ′

)
. (10)

It remains to identify the quasienergy (ε) by constructing the permissible Floquet
decompositions of the wavefunction, which leads to the expression:

εn,m = 1

Tp

∫ Tp

0
KTD(Ln, t ′) dt ′ + 2πmh̄/Tp n = 0, 1, . . . m = 0,±1,±2, . . . .

(11)

We notice the interesting connection between the quantal quasienergy and the time-
average of the proper normal-form HamiltonianKTD. One can verify for the forced linear
oscillator [7], that this average value is different from the long-time trajectory average
of the original Hamiltonian, but of course identical to the long-time trajectory average of
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KTD. Nevertheless, theprincipal quasienergyεn,0 of an elliptic island has a clear classical
interpretation as an average energy in terms of the proper centre Hamiltonian. The only
nontrivial calculations involved are related to the coefficient functions, since (4) yields the
time average

〈KTD(Ln, t)〉t = 〈−Lp〉t + 〈η1〉tLn + 〈η2〉tL2
n + · · · (12)

where the Ermakov–Lewis invariant is already quantized in equation (8). In (12)〈η1〉t is
interpreted as the average angular velocity of thelinearized tube motion. It obviously plays
an important role for the identification of resonances. On the other hand, the average angular
velocity of extended tubes (obtained by differentiating (12) with respect toLn) depends on
the value of the Ermakov–Lewis invariantLn, which is the main nonlinear manifestation.
The ‘softening’ or ‘stiffening’ behaviour of the local oscillator is typically determined by
the quantity〈η2〉t .

3. Resonance limitations

The order of truncation of the normal-form Hamiltonian depends on the existence of a
highest indexN of a periodic coefficient functionηN(t). The coefficients are, as we shall
see, subject to certain non-resonant conditions of the angular velocity (or winding number)
of the linearized flow near the periodic centre. A closer look at the leading coefficient
functions in (4) shows that they are expressed in terms of two types of functions intrinsic to
the time-dependent normal-form theory. According to [4] and [11], the leading normal-form
coefficient is given by

η1(t) = ρ−2(t). (13)

where the real and positive functionρ(t) is a periodic Milne solution, satisfying

ρ̈(t)+ h2(t)ρ(t) = ρ−3(t). (14)

For the sake of simplicity we have suppressed an additional parameter in equations (13)
and (14) that can be eliminated by rescaling the Milne solution [11].

The second, complete normal-form coefficient was first derived in [4]:

η2(t) = 3
8h4(t)ρ

4(t)+ 3
2h3(t)ρ

3(t)(Im a21(t)− Im a30(t)) (15)

whereakl(t) are solutions of the following type of linear equations:

ȧkl(t)+ iη1(t)(k − l)akl(t) = 2ifkl(t) k + l = 3, 4, . . . . (16)

The driving functionsfkl(t) on the right-hand side are always periodic and known from
earlier transformation steps. Previously an incomplete approximation of the second normal-
form coefficient was given in [6]:

η1
2(t) = 3

8h4(t)ρ
4(t) (17)

neglecting the leading (cubic) transformation functionsa21(t) anda30(t).
From the basic coefficient equations (13) and (15) we can see that the existence of

a periodic Milne solution is the true ‘bottle neck’ of the narrow-tube quantization. This
sets the main resonance limitation, which we shall describe below. Secondary resonances
show up in the following transformation coefficientsakl(t), as they cease to exist despite
an existing Milne solution.
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3.1. Main resonance

We shall first assume that the centre motion is stable, which is at the very essence of the
elliptic islands. The linearized flow

Q̈(t)+ h2(t)Q(t) = 0 (18)

is then stable with periodic or quasiperiodic solutions only. Since the Milne, or amplitude
solutionρ(t) can be viewed as the radial motion in the plane of two fundamental solutions

Q1(t) andQ2(t) asρ(t) = constant×
√
Q2

1(t)+Q2
2(t) (see e.g. [3, 12, 13]), we have with

our assumption secured the existence of a finite functionρ(t) (at least). That it can also
be found periodic follows from Floquet theory as described subsequently (an alternative
argument is given in [13]).

With our assumption equation (18) has, since it is real, two fundamental Floquet
solutions, which can be written formally asP(t)eiλt together with its complex conjugate.
HereP(t) is a complex periodic function with the underlying Floquet periodTF , defined by
the periodicity of the functionh2(t+TF ) = h2(t), and±iλTF are the imaginary characteristic
exponents. Hence,λ corresponds to our average angular velocity〈η1〉t . As real fundamental
solutionsQ1(t) andQ2(t) one may take the real and imaginary parts, hence yielding the
suitableTF -periodicρ(t) = constant×√P(t)P ∗(t).

Failure of finding a periodic Milne solution hinges on the independence of the
fundamental Floquet solutions. Solutions are degenerate if for example±λ =
0(mod 2π/TF ), but also if ±λ = ±π/TF (mod 2π/TF ), since then e−i(π/TF )t =
e−2i(π/TF )tei(π/TF )t , and both Floquet solutions again become of the same form. We conclude
that main resonances occur when

λ = 〈η1〉t = π/TF (modπ/TF ) (19)

where typicallyTF = Tp/2 or Tp, depending on the symmetry of the centre motion.

3.2. Secondary resonance

Returning to equation (16) for the transformation coefficients entering the normal form, it
is straightforward to solve the linear equation with the additional periodicity requirement of
the centre motionakl(0) = akl(Tp). We find:

akl(0) =
2i
∫ Tp

0 fkl(t)ei(k−l) ∫ t0 η1(x) dx dt

ei(k−l) ∫ Tp0 η1(t) dt − 1
. (20)

In particular, we see the breakdown of the formula whenever∫ Tp

0
η1(t) dt = 2πj

k − l (21)

for any integersj , k and l 6= k. Hence, the winding angle over one centre period cannot
be an integral fraction of 2π , or multiples thereof. For the leading higher-order normal-
form coefficient we need only worry about the casek + l = 3, i.e. the winding angles
2π/3, 4π/3, . . . and the vanishing or complete ones, already excluded by the main resonance
restriction.
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4. Application to the forced Duffing oscillator

The explicit form of the unit mass Hamiltonian Duffing oscillator is given by

H(px, x, t) = 1
2p

2
x + 1

2kx
2+ 1

4sx
4− rx cost (22)

wherek is the linear oscillator stiffness ands is the nonlinearity strength. By the canonical
periodic-centre transformation, we obtain the basic ’centre’ Hamiltonian (3) with (see e.g.
[6])

−Lp(t) = − 1
2 ẋ

2
p + 1

2kx
2
p + 1

4sx
4
p − rxp cost (23)

h2(t) = k + 3sx2
p (24)

h3(t) = 3sxp (25)

h4(t) = s. (26)

In the numerical calculations we consider the dominating harmonic centres of period
Tp = T = 2π , and a subharmonic centre with periodTp = 3T = 6π . We observe
that the centre motionxp(t) for the Duffing oscillator enters quadratically inh2(t), which
makes this coefficientTp/2-periodic for symmetric responses. The period of the Milne
solutionρ(t) is then alsoTp/2. On the other hand,h3(t) has the periodTp.

The higher-order transformation coefficientsakl(t) in (16) require explicit expressions
for the functionsfkl(t). They, in turn, have already been worked out in [4] for the leading
orders. We have

f3−l,l(t) = 1

3
h3(t)ρ

3(t)

(
− i

2

)3(3

l

)
(−1)l (27)

which together with (25) leads to the two equations:

ȧ30(t)+ 3iη1(t)a30(t) = − 1
4sxp(t)ρ

3(t) (28)

and

ȧ21(t)+ iη1(t)a21(t) = 3
4sxp(t)ρ

3(t). (29)

The expression for the coefficientη2(t) in (15) indicates a significant contribution through
a30(t) and a21(t) from the cubic coefficienth3(t) of the centre Hamiltonian (3) that was
previously neglected in the narrow-tube quantization [6]. One can expect in adiabatic or
quasistationary situations thata21(t) will be the larger of the two transformation coefficients.
In fact, in [4] the adiabatic expressions were derived with the results:

a30 = ih3

36h5/4
2

(30)

a21 = − ih3

4h5/4
2

. (31)

In such an approximation we see that these coefficients are imaginary.

4.1. T -periodic centres

We take a look at the perturbed harmonic oscillator (s = 0.03, r = 0.5) previously studied
in [6]. For k > 1 the oscillator has a single stable harmonic response dominating the phase-
space map, whilst fork < 1 two stable centres (referred to as oflarge amplitudeandsmall
amplitude in this paper) prevail. As is well known, the single centre fork > 1 continues
smoothly to the large-amplitude centre fork < 1. The small-amplitude centre bifurcates
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Figure 1. Illustration of adiabaticT -harmonic vortex tube. The weakly nonlinear Duffing
system described in the text has a stiffnessk = 3.

near resonancek ≈ 1 together with a hyperbolic fix point (unstable response). Initially
we would like to numerically analyse the situations in which the second coefficientη2(t)

becomes small, as is the case for the single-amplitude (i.e.k > 1) and large-amplitude (for
k < 1) centres.

4.1.1. Adiabatic behaviour. At large positivek the single centre, as for example the centre
of the tube in figure 1, has a relatively small amplitude. This situation is ideal for the
adiabatic approximationof the Milnes solutionρ(t) ≈ (k + 3sxp(t))−1/4, obtained by
neglecting the time derivative in (14) and inserting (24). The almost-constant behaviour
of ρ(t) carries through to the smooth behaviour ofa30(t) and a21(t), which can also be
obtained by a similar adiabatic approximations of equations (28) and (29). The vortex tube
in figure 1 is consequently very much like the traditional ones drawn by hand, and we do
not intend to analyse it further.

4.1.2. Non-adiabatic behaviour.As k decreases through zero, turning the oscillator to its
double-well characteristics, the adiabatic behaviour gradually disappears, whilst the centre
remains stable. Surprisingly the normal-form expansion in table 1 seems to converge rapidly,
allowing larger values of the Ermakov–Lewis invariant and, hence, an accurate description of
more quantum states supported by the elliptic centre. However, it turns out to be dangerous
to neglect any of the terms in formula (15) for the coefficientη2(t). In [6] the authors noted
that a crude approximationη1

2(t) (cf formula (17)) of the coefficientη2(t), obtained by a
simplified averaging procedure, did not improve the lowest-order narrow-tube formula as it
did in other situations. The corresponding non-adiabatic flux tube fork = −2, looking flat
and simple-folded, is illustrated in figure 2; analysed in its transformation components in
figure 3 and its normal-form components in figure 4.

In figure 3 the top left subplot shows the periodic centre motionxp(t) together with the
corresponding periodic Milne solution (broken line), and the top right subplot shows the
approximationη1

2(t) given by formula (17), which is just the contribution from the quartic
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Table 1. s = 0.03, r = 0.5. Time averages of normal-form expansion coefficients forT -periodic
centres.

k x0 〈η0〉t 〈η1〉t 〈η1
2〉t 〈η2〉t

Single centre
3 0.249 844 −0.031 239 1.732 861 0.003 75 0.003 73
1.5 0.961 024 −0.122 410 1.241 404 0.007 32 0.005 69

Large-amplitude centre
0.6182 5.699 981 −3.421 941 1.156 081 0.046 19−0.001 15
−1 10.015 221−23.085 324 1.162 717 0.136 83−0.000 71
−2 12.469 262−47.791 944 1.165 039 0.253 62−0.000 56

Small-amplitude centre
0.6633 −2.200 821 0.208 674 0.975 139 0.106 17 11.312 34
0.6182 −0.830 272 0.102 387 0.642 738 0.027 26 0.030 83
0.097 −0.558 188 0.069 482 0.333 228 0.101 32 6.972 14
−0.01 −0.497 901 0.062 052 0.034 157 9.643 03 10.299 30

0

0.5

1

-15-10-5051015
-15

-10

-5

0

5

10

15

t

x

p

Figure 2. Illustration of two differentT -harmonic vortex tubes fork = −2. The non-adiabatic
tube discussed in the text winds both wells in the ‘double-well’ oscillator, partly surrounding an
adiabatic tube localized in a single well.

part of the basic centre Hamiltonian to the normal form coefficientη2(t). The bottom
subplots show the transformation coefficientsa30(t) and a21(t) caused by the cubic terms
of the basic centre Hamiltonian. They show aT -periodic behaviour with distinct spikes at
times t = 0 andT/2 (modT ).

The complete normal-form coefficientsη1(t) andη2(t) are finally compared in figure 4.
The first of these coefficients has prominent spikes att = 0 and T/2 (mod T ) when
it dominates the normal form. The second coefficientη2(t) looks smoother than the
transformation coefficientsa30(t) and a21(t) suggested in figure 3. Their spikes are
suppressed by the simultaneous smallness of the factorρ3(t) in formula (15). It is seen
that η2(t) also differs fromη1

2(t) of figure 3, explaining a much smaller averaged value.
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Figure 3. Analysis of transformation components for the non-adiabatic flux tube of figure 2 at
k = −2.
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Figure 4. Time dependence of normal-form coefficients for the non-adiabatic flux tube of
figure 2.

However, η2(t) is still relatively large compared withη1(t) at significant time intervals
inside the period cycle.

Another important observation in figure 4 is that both normal-form coefficients have the
periodT/2, although we have only proved this behaviour for the first oneη1(t). In formula
(15) it is the product of the centre motion symmetryxp(t + T/2) = −xp(t) and the same
symmetry of the transformation coefficients that has this effect.
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Figure 5. Analysis of small-amplitude centre components fork =0.6633.

4.1.3. Main resonances.We did not observe any resonance breakdown of the normal
form coefficients for the large-amplitude/single-harmonic centre in the parameter region
considered. This appears instead in the small-amplitude harmonic centre, which is stable in
the limited approximate parameter range−0.010< k < 0.663. In table 1 we see that the
time-averaged coefficient〈η2(t)〉t for the small-amplitude centre becomes large compared
with 〈η1(t)〉t close to the stability limits, while being small in the middle of the stability
interval. We conclude that atk = 0.6633 we are close to a main resonance, since〈η1〉t ≈ 1
according to table 1. When studying the analysis of the basic quantities in figure 5 and its
consequences on the time behaviour of the normal-form coefficients in figure 6, we observe
a weakly singular behaviour of Milne’s amplitude solution, becoming the finite absolute
value ofxp(t). The time behaviour of the coefficientη2(t) in figure 6 shows again a period
of T/2. |η2(t)| becomes particularly large at timest = 0, T /4, T /2, . . ., where it dominates
the linear coefficientη1(t).

A different (not illustrated) singular behaviour of the Milne solution is encountered
when analysing the other end (seek = −0.01 in table 1) of the stability interval. This is a
main resonance with〈η1〉t ≈ 0. Here the centre amplitude is very small, but still the Milne
solution becomes very large (eventually infinite).

4.1.4. Secondary resonances.We turn to purely secondary resonances of the small-
amplitude centre. Atk = 0.097 we are close to a secondary 3T -resonance, since〈η1〉t ≈ 1

3 in
table 1. This resonance shows up, due to condition (21), as an unusually large transformation
coefficienta30(t), which in turn is causing the large normal-form coefficientη2(t). We can
confirm, in figures 7 and 8, that the Milne solution is regular and not responsible for the
largeη2(t). Although the Milne solution is almost constant, the situation is not adiabatic.
We also recall thata21(t) should be the largest of the transformation coefficients in adiabatic
situations.

4.1.5. Quasienergies.To close this section, we compare, in table 2, the first- and second-
order quasienergies given by formula (11) with the semiclassical EBK results already
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Figure 6. Time dependence of normal-form coefficients for the motion near the small-amplitude
centre atk = 0.6633.
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Figure 7. Analysis of the small-amplitude centre components near a subharmonic 3T -resonance
at k = 0.097.

published in [6]. Numerically, we use the value ¯h = 1 in our calculations. The second-
order narrow-tube results are consistently better than the first-order ones for the leading
‘principal’ quasienergies. This may be due to the non-resonant parameter values chosen
for the comparison. The experience in [6] with the large-amplitude elliptic centre was that
the crude higher-order approximation would shift the first-order quasienergies in the wrong
direction. This is confirmed in the corresponding entries of table 1.

We finally note that both EBK and narrow-tube quantizations have an absolute energy
scale to the principal part of the quasienergies, in contrast to the quantal numerical methods.
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Figure 8. Time dependence of normal-form coefficients for the motion near the small-amplitude
centre near a subharmonic 3T -resonance atk = 0.097.

Table 2. Quasienergies located at the large-amplitude and small-amplitude elliptic centres.
Parameters are found in table 1 and [3].

x0 n εNT1 εNT2 εSC

5.699 98 0 −2.8439 −2.8442 −2.8445
1 −1.6878 −1.6904 −1.6907
2 −0.5317 −0.5389 −0.5391
3 0.6243 0.6103 0.6096

−0.830 27 0 0.4238 0.4315 0.4312
1 1.0665 1.1359 1.1309
2 1.7092 1.9019 1.8834
3 2.3520 2.7296 2.6930

4.2. 3T-periodic centre

We would also like to establish the time-dependent normal form for quantizing motion
inside subharmonic resonance islands. The first investigation of the quasienergy spectrum
corresponding to subharmonic motion seems to be that of Holthaus and Flatte [14].

Here we are interested in a particular subharmonic centre motion for the Duffing
oscillator given by (see [15]):

xp(t) = 2
( r

2

)1/3
cos(t/3) (32)

where the quenching of higher harmonics is achieved by a specific relation between the
excitation amplitude and the linear spring constant:

r = 2( 1
27 − k/3)3/2 > 0. (33)

The simple form of the subharmonic centre motion (32) makes it suitable for the analytic
transformation of the Hamiltonian. The resulting analytic expression forh2(t) also makes
the stability analysis of the centre motion rigorously understood from the Mathieu equation
[16].
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Figure 9. Illustration of T -harmonic and 3T -subharmonic vortex tubes.

In the relevant parameter region the oscillator develops from the single-well character
(0< k < 1

9) to the double-well character (k < 0). In order to sustain the centre motion (32)
the excitation is adjusted to fulfil the quenching condition above. The solution exists for all
k < 0 and its amplitude tends to infinity in the limitk→−∞. However, it passes through
alternately stable and unstable intervals, the latter rapidly becoming larger and larger [16].
The largest stability interval being−0.166 66< k < 0.111 111.

For k = 0 ands = 1 we then have a particular driven quartic Ueda oscillator, which
shows quite dense phase-space structures corresponding to various subharmonic motions,
as reported by Mirbach and Korsch [17] and Korschet al [18]. From such a view of phase
space, one expects that some quasienergies are dominated by the subharmonic motion, and
the 3T -islands clearly dominate a considerable region of phase space, not too far from the
origin.

In figure 9 we have illustrated the disconnected subharmonic vortex tubes in the period-
T interval, surrounded by a harmonic tube of larger amplitude. With a sufficiently small
value of h̄ (in the calculations we have ¯h = 0.0005) there will exist some quasienergy
states localized to such vortex tubes. Mirbach and Korsch [17] and Korschet al [18] have
performed semiclassical EBK calculations of quasienergies and compared the results with
exact quantal ones. Their studies also comprise the extended states, influenced by tunnelling
between the subharmonic tubes through the (chaotic) hyperbolic ridges.

To establish the narrow-tube quantization formula (11) we first note that the time-
averaged quantities〈η0(t)〉t , etc are all calculated over the centre period 3T and the
Brillouin-zone multiples are in units of ¯h/3. In table 3 we study the averaged normal-
form coefficients inside the main stability interval mentioned earlier. The second-order
coefficient is generally of a much larger magnitude in this case, allowing reliable second-
order applications only to small values of the Ermakov–Lewis invariant. Close to the main
stability loss it increases even more. We notice thatTF = Tp/2 = 3π , so that the main
resonances (see equation (19)) occur for〈η1〉t = 1

3(mod 1
3).

In table 4 we study the first- and second-order narrow-tube approximations of the leading
principal quasienergies on the absolute scale given by classical mechanics. The quantal
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Table 3. s = 1, r = 2( 1
27 − k/3)3/2. Centre fix point and averaged normal-form coefficients.

k x0 〈η0〉t 〈η1〉t 〈η1
2〉t 〈η2〉t

−0.16 0.601 2333−0.012 2502 0.621 897 38 17.9858−24.7823
0 0.384 9002−0.002 0576 0.405 525 41 10.3894−2.8687
0.10 0.121 7161−0.000 0206 0.335 927 57 188.9330−3.6834

Table 4. Principal quasienergies for subharmonic elliptic centre atk = 0. Exact results are
transformed to our energy scale from [9].

x0 n εNT1 εNT2 εExact

0.384 9002 0−0.001 956 23−0.001 956 41−0.001 956 49
1 −0.001 753 47−0.001 755 08−0.001 755 22
2 −0.001 550 71−0.001 555 19−0.001 555 50
3 −0.001 347 94−0.001 356 73−0.001 357 46
4 −0.001 145 18−0.001 159 70−0.001 161 23
5 −0.000 942 42−0.000 964 11−0.000 967 03

results are carefully traced back from [17] to this scale by adding or subtracting multiples
of h̄/3. The improvement provided by the second-order contribution is easily destroyed if
the crude approximation〈η1

2〉t is used instead of〈η2〉t (see table 3).

5. Concluding remarks

In this study we show that the narrow-tube quantization is reliable for calculating
quasienergies associated with regular phase-space motion near stable periodic orbits.
Comparisons with EBK and full quantal calculations are in very good agreement, with
significant contributions from the higher-order normal-form terms. We note that these
quasienergies and the corresponding localized Floquet states seem to be related to the
‘Trojan wavepackets’ of Kalinsky and Eberly [19] and the ‘non-spreading wavepackets’
by Buchleitner and Delande [20].

With the narrow-tube quantization we gain a pictorial understanding of various
sequences of quasienergies corresponding to elliptic islands of phase space. The position
on the quasienergy scale is governed by the zeroth-order contribution〈η0(t)〉t , which is the
negative Lagrangian action of the centre motion. This corresponds to the depths of various
ordinary energy wells. Then the sequence of states ‘inside each well’ is a fingerprint of
the structure of the well. The well shape, for example, is related to the ‘oscillation period’
which in turn corresponds to the angular velocity of the oscillatory motion. In a quasienergy-
versus-quantum number plot, the contributions from elliptic islands will thus appear as a
patchwork of sequences of states with characteristic positions and slopes.

We observed that the second-order time-dependent normal form possessed a stronger
symmetry than the basic centre Hamiltonian suggested. Specifically,all coefficients of
the normal form have a period ofT/2, which is not the case in the original centre
Hamiltonian. Consequently, the angular velocities on the consideredT -periodic vortex tubes
rather show aT/2-periodic behaviour. This behaviour is a consequence of the symmetry
xp(t + T/2) = −xp(t) of the centre motion. A similar result can be shown for the 3T -
periodic vortex tube in our study.
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